ก

 างศึกษาIUรียบIกียบควาแสาแารกของ ॥Uบจำลอง CAPM ॥ล: Fama-French ของKลักกร้พย์Kแวดพล้องานIละสาธารญูปโกค

A Comparison Study of the Abilities of CAPM and Fama-French in Estimating Rates of Return on Energy Sector Securities Listed on the Stock Exchange of Thailand
: गssณธธயี Uานธี่นว̄จ̄ตร
: สาขาวิชาการเงิน คณะบริหารธุรกิจ
: มหาวิทยาลัยหอการค้าไทย
: Wanrapee Banchuenvijit

- Department of Finance, School of Business
- University of the Thai Chamber of Commerce
- E-mail: wanrapee_ban@utcc.ac.th

บทคัดย่อ

การศึกษาเปรียบเทียบความสามารถของแบบจำลอง CAPM และ Fama-French ในการประมาณการ อัตราผลตอบแทนของหลักทรัพย์หมวดพลังงานและสาธารณูปโภค มีวัตถุประสงค์เพื่อศึกษาว่า แบบจำลองใดมีความสามารถในการประมาณการอัตราผลตอบแทนได้ดีกว่ากัน โดยใช้ข้อมูลตั้งแต่ เดือนกันยายน พ.ศ. 2550 ถึงเดือนสิงหาคม พ.ศ. 2555 โดยเก็บข้อมูลจากตลาดหลักทรัพย์แห่ง

ประเทศไทย เครื่องมือที่ใช้ในการศึกษาเปรียบเทียบมี 3 วิธี ได้แก่ (1) Standard Multivariate Regression (2) Davidson and Mackinnon Equation และ (3) Residual Analysis ผลการศึกษา พบว่า เครื่องมือทั้ง 3 วิธี ให้ผลที่สอดคล้องกัน กล่าวคือ Fama-French สามารถประมาณการอัตรา ผลตอบแทนของหลักทรัพย์ในหมวดธุรกิจพลังงานและสาธารณูปโภคได้อย่างมีนัยสำคัญทางสถิติได้ จำนวนมากกว่า CAPM จึงสรุปได้ว่า Fama-French มีความสามารถในการประมาณการอัตรา ผลตอบแทนของหลักทรัพย์ได้ดีกว่า CAPM ทั้งนี้ อาจเป็นเพราะ Fama-French มีการใช้ปัจจัยขนาด และปัจจัยอัตราส่วนมูลค่าหลักทรัพย์ตามบัญชีต่อราคาตลาด เพิ่มเติมจากปัจจัยส่วนชดเชยความเสี่ยง ตลาดของ CAPM

คำสำคัญ: แบบจำลอง CAPM แบบจำลอง Fama-French การประมาณการอัตราผลตอบแทนของ หลักทรัพย์

Abstract

The objective of this comparison study of CAPM and Fama-French abilities in estimating rates of return on energy sector securities listed on the Stock Exchange of Thailand was to determine which model, CAPM or Fama-French, has a better ability to estimate securities' rates of return. The data were collected from the Stock Exchange of Thailand during September 2007 to August 2012. Three techniques were employed: (1) Standard Multivariate Regression, (2) Davidson and Mackinnon Equation and (3) Residual Analysis. Results from all three techniques were consistent. The results showed that Fama-French could estimate rates of return with greater statistical significance than CAPM, thus, Fama-French had a better ability in estimating rates of return on energy sector securities listed on the Stock Exchange of Thailand. The reason might come from two additional factors in determining rate of return, namely the size factor and the book-to-market ratio factor, besides the market risk premium of CAPM.

Keywords: CAPM, Fama-French, Three-Factors Model, Estimate Rate of Return

ความเป็นมาและความสำคัญของปัญหา
ตจาดุุนในปขจจุบันป็นแหห่งระดมเงินทุนจาก บริษิที่ต้ตัตการเงินทุนพื่อไปใช่ในการลงทุน โดยเป็น การนําเงินจกกูู้ที่จะต้องกรออมเเิน พึ่งก็คีอ นักลงทุน ไปลงทุน ชึ่ทำให้บริษัทสสมารถดำนินธุรจิใด้เห้เดิบโต และยังเป็นการสนันสนุนระบบเศรษฐิจิจให้จี้ัี้น ทั้นีี้ ผลตอบแทนของนักลงทุนที่มาลงทุนในตลาดทุน ได้แก่ ผลตอบแนนจากผลกำไรของบริษัทในรูปของ เงินป้นผล และผลตอบแทนจากส่วนต่างของราคา หลักทรัพย์ โดยตลาดทุทที่มียยู่ในประเทศไดย ได้แก่ ตลาดหลักทรัพย์แห่งประเทศไทย (Stock Exchange
of Thailand) พึ่งเป็นตลาดทุนที่นักลงทุนไม่สามารถ ใช้เพียขข้อมูลอดีตของราคาหลักทรัพย์แล้วทำกำไร ส่วนเกินปกติได้ (วรรณรพี บานชี่นวิจิตร และสุนิสา มูชี่น, 2556 : 68) แลเเป็นแห่่งระดมเงินทุทที่มีความ สำคัญุต่อุุรจจจททุกปรเเภท โดยเฉพาออย่างิิ่งุุรทิจ ครอบครัวที่มีมากกว่าร้อยละ 50 ของบริษัทัั้งหมด ที่จดทะเบียนซื้อขายในตลาดหลักทรัพย์ (ภูษิต วงศ์หล่อสายชล และวรรณรพี บานชื่นวิจิตร, 2551: 53) ทั้งนี้ มูลค่าการื้อขายหลักทรัพย์แยกตามกลุ่ม อุตสาหกรรมในตลาดหลักทรัพย์แห่งประเทศไทย ระหว่างเดือนกันยายน พ.ศศ 2550 ถึงเดือนสิงหาคม พ.ศ. 2555 แสดงในภาพที่ 1

ภาพที่ 1 มูลค่าการซื้อขายหลักทรัพย์แยกตามกลุ่มอุตสาหกรรมในตลาดหลักทรัพย์แห่งประเทศไทย ระหว่างเดือน กันยายน พ.ศ. 2550 ถึงเดือนสิงหาคม พ.ศ. 2555
ที่มา: ตลาดหลักทััพย์แห่งประเทศไทย, 2555ข

จากภาพที่ 1 แสดงให้เห็นว่ามูลค่าการซื้อขาย ระหว่างเดือนกันยายน พ.ศ. 2550 ถึงเดือนสิงหาคม พ.ศ. 2555 กลุ่มอุตสาหกรรมที่มีมูลค่าการซื้อขาย มากที่สุด คือ กลุ่มอุตสาหกรรมพลังงานและ สาธารณูปโภค อีกทั้งกลุ่มอุตสาหกรรมพลังงานและ สาธารณูปโภคยังเป็นกลุ่มอุตสาหกรรมที่ให้อัตรา ผลตอบแทนที่มากกว่าตลาด จึงทำให้หลักทรัพย์ใน กลุ่มอุตสาหกรรมพลังงานและสาธารณูปโภคเป็นที่ สนใจของนักลงทุน

ทั้งนี้ นักลงทุนที่ลงทุนในหลักทรัพย์กลุ่ม อุตสาหกรรมพลังงานและสาธารณูปโภคย่อมต้องมี การคาดหวังอัตราผลตอบแทนของการลงทุน ดังนั้น จึงต้องมีการประมาณการอัตราผลตอบแทน โดยแบบ จำลองที่ใช้ ได้แก่ CAPM (Capital Asset Pricing Model) ซึ่งเป็นการคำนวณอัตราผลตอบแทนจาก ความเสี่ยงตลาด และ Fama-French Three Factors Model ซึ่งเป็นการนำปัจจัยส่วนชดเชยความเสี่ยง ตลาด ปัจจัยขนาด และปัจจัยอัตราส่วนมูลค่า หลักทรัพย์ตามบัญชีต่อมูลค่าหลักทรัพย์ตามตลาด ของหลักทรัพย์มาคำนวณอัตราผลตอบแทน

ฉะนั้น จากการที่มีนักลงทุนสนใจลงทุนในหลัก ทรัพย์กลุ่มอุตสาหกรรมพลังงานและสาธารณูปโภค ที่อยู่ในตลาดหลักทรัพย์แห่งประเทศไทย และจาก การที่พลังงานเป็นสิ่งที่จำเป็นในการดำรงชีวิตของ ผู้บริโภคและการดำเนินธุรกิจ กลุ่มอุตสาหกรรม พลังงานและสาธารณูปโภคจึงเป็นกลุ่มอุตสาหกรรม ที่น่าสนใจที่จะศึกษาเปรียบเทียบความสามารถ ของแบบจำลองที่ใช้ในการประมาณการอัตราผล ตอบแทน อันประกอบไปด้วย CAPM และ FamaFrench เพื่อหาความสามารถของการประมาณการ อัตราผลตอบแทนของหลักทรัพย์ในกลุ่มอุตสาหกรรม พลังงานและสาธารณูปโภค เพื่อใช้เป็นแนวทางให้แก่

นักลงทุนที่สนใจลงทุนหลักทรัพย์กลุ่มอุตสาหกรรม พลังงานและสาธารณูปโภคในตลาดหลักทรัพย์ แห่งประเทศไทย สามารถนำไปใช้ในการประกอบการ ตัดสินใจลงทุน

นิยามศัพท์

ความสามารถในการประมาณการอัตราผล ตอบแทน หมายถึง การเปรียบเทียบความสามารถ ในการประมาณการอัตราผลตอบแทนของหลักทรัพย์ ของแบบจำลองที่ศึกษา โดยทดสอบด้วยวิธีที่กำหนด และพิจารณาที่ระดับนัยสำคัญทางสถิติ เมื่อทดสอบ ด้วยวิธีต่าง ๆ แล้วจะนำผลของการประมาณการนั้น มาเปรียบเทียบ เพื่อดูว่าแบบจำลองใดประมาณการ อัตราผลตอบแทนหลักทรัพย์ได้อย่างมีนัยสำคัญ ทางสถิติจำนวนมากกว่า แบบจำลองนั้นก็จะมีความ สามารถในการประมาณการอัตราผลตอบแทนที่ดีกว่า

ทฤษฎีและงานวิจัยที่เกี่ยวข้อง

การศึกษาความสามารถของแบบจำลองในการ ประมาณการณ์อัตราผลตอบแทนของหลักทรัพย์ หมวดพลังงานและสาธารณูปโภคในตลาดหลักทรัพย์ แห่งประเทศไทย มีแนวคิด ทฤษฎี และงานวิจัย ที่เกี่ยวข้อง ดังนี้

Capital Asset Pricing Model: CAPM

แบบจำลองการประเมินราคาหลักทรัพย์ คิดค้น โดย William F. Sharpe ซึ่งเป็นการแสดงถึงความ สัมพันธ์ระหว่างอัตราผลตอบแทนที่นักลงทุนคาดหวัง จากการลงทุนในหลักทรัพย์กับอัตราผลตอบแทนของ ตลาด และความผันผวนของอัตราผลตอบแทน จะได้ รับผลกระทบจากความเสี่ยงที่เป็นระบบ ซึ่งมีผล กระทบมาจากการเปลี่ยนแปลงของภาวะเศรษฐกิจ

และสภาวะของอุตสาหกรรม ภายใต้สมมติฐานของ ตลาดที่สมบูรณ์ (Perfect Market) ซึ่งไม่มีค่าใช้จ่าย ในการซื้อขายหลักทรัพย์

Security Market Line (SML)

Security Market Line (SML) เป็นเส้นที่แสดง ถึงความสัมพันธ์ระหว่างอัตราผลตอบแทนของ หลักทรัพย์กับค่าเบต้าของหลักทรัพย์ ดังแสดงใน ภาพที่ 2

ภาพที่ 2 เส้น SML (Security Market Line) ที่มา: ตลาดหลักทรัพย์แห่งประเทศไทย, 2555ก
$\mathrm{E}\left(R_{i}\right)$ คือ อัตราผลตอบแทนที่ผู้ลงทุนต้องการ ได้รับจากหลักทรัพย์ i
β_{i} คือ ค่าความเสี่ยงร่วมระหว่างอัตรา ผลตอบแทนจากหลักทรัพย์ i กับ ตลาด
R_{f} คือ อัตราผลตอบแทนของหลักทรัพย์ที่ ปราศจากความเสี่ยง
$\mathrm{E}\left(R_{M}\right)$ คือ อัตราผลตอบแทนที่ผู้ลงทุนต้องการ ได้รับจากกลุ่มหลักทรัพย์ตลาด
M คือ ค่าความเสี่ยงของตลาด
จากภาพที่ 2 แกนตั้งแสดงถึงอัตราผลตอบแทน ที่นักลงทุนต้องการ ณ ระดับความเสี่ยงต่าง ๆ และ

แกนนอนแสดงถึงค่าความเสี่ยงของหลักทรัพย์รายตัว ดังนั้น กรณีหลักทรัพย์ปราศจากความเสี่ยง จึงมี ค่าความความเสี่ยงเท่ากับศูนย์ และระดับอัตรา ผลตอบแทนที่เท่ากับอัตราผลตอบแทนที่ปราศจาก ความเสี่ยง

โดยที่ค่า β_{i} คือ ค่าเบต้าของหลักทรัพย์ ดังนั้น จึงอาจเขียนสมการของ Security Market Line ได้ ดังนี้

$$
\mathrm{E}\left(R_{i}\right)=R_{f}+\left[\mathrm{E}\left(R_{M}\right)-R_{f}\right] \beta_{i}
$$

สมการนี้เป็นสมการแสดงความสัมพันธ์ระหว่าง อัตราผลตอบแทนที่นักลงทุนต้องการจากการลงทุน ในหลักทรัพย์ เปรียบเทียบหรือแสดงค่าความสัมพันธ์ กับค่าเบต้า

ค่าเบต้า (Beta) เป็นดัชนีชี้ค่าความเสี่ยงที่เป็น ระบบ ค่าเบต้าแสดงถึงระดับและแนวโน้มของการ เปลี่ยนแปลงของอัตราผลตอบแทนของหลักทรัพย์ เปรียบเทียบกับอัตราการเปลี่ยนแปลงของตลาด

ถ้าหลักทรัพย์มีค่าเบต้าน้อยกว่า 1.0 แสดงว่า หลักทรัพย์นั้นมีการเปลี่ยนแปลงของอัตราผลตอบแทน น้อยกว่าการเปลี่ยนแปลงของอัตราผลตอบแทนของ ตลาด

หากหลักทรัพย์มีค่าเบต้ามากกว่า 1.0 แสดงว่า หลักทรัพย์นั้นมีการเปลี่ยนแปลงของอัตราผลตอบแทน มากกว่าการเปลี่ยนแปลงของอัตราผลตอบแทนของ ตลาด

The Fama-French Three-Factors Model

Fama-French Three-Factors Model ได้นำ ปัจจัยด้านขนาดและปัจจัยอัตราส่วนมูลค่าหลักทรัพย์

 ตามบัญชีต่อราคาตลาด ซึ่งเพิ่มเติมจากปัจจัยส่วน ชดเชยความเสี่ยงตลาดของ CAPM มาศึกษาอัตรา ผลตอบแทนหลักทรัพย์จากการศึกษา พบว่า หลักทรัพย์ ของธุรกิจที่มีขนาดเล็ก (Small Size) จะให้อัตรา ผลตอบแทนที่สูงกว่าหลักทรัพย์ของธุรกิจที่มีขนาด ใหญ่ (Big Size) และได้พยายามสร้างแบบจำลอง ใหม่ที่มีพื้นฐานมาจากแบบจำลอง CAPM โดยมี วัตถุประสงค์เพื่ออธิบายอัตราผลตอบแทนที่คาดหวัง ของหลักทรัพย์ โดยมีปัจจัยที่เกี่ยวข้อง ได้แก่

1) อัตราผลตอบแทนของตลาดหลักทรัพย์ซึ่งมี พื้นฐานจากแบบจำลอง CAPM คือ อัตราผลตอบแทน ของตลาดหักอัตราผลตอบแทนที่ไม่มีความเสี่ยง
2) ผลต่างระหว่างอัตราผลตอบแทนของ หลักทรัพย์ของธุรกิจขนาดเล็กกับธุรกิจขนาดใหญ่ (SMB: Small Minus Big)
3) ผลต่างระหว่างอัตราผลตอบแทนของธุรกิจ ที่มีอัตราส่วนมูลค่าหลักทรัพย์ตามบัญชีต่อราคาตลาด สูง กับธุรกิจที่มีอัตราส่วนมูลค่าหลักทรัพย์ตามบัญชี ต่อราคาตลาดต่ำ (HML: High Minus Low) ซึ่งจะได้ สมการดังนี้
$R_{i}-R_{f}=\beta_{i}\left(R_{m}-R_{f}\right)+S_{i}(\mathrm{SMB})+H_{i}(\mathrm{HML})+e_{t}$
โดย $\beta_{i} S_{i}$ และ H_{i} คือ ค่าสัมประสิทธิ์ของสมการ ถดถอยอนุกรมเวลา (Time Siries)

ขั้นแรก Fama and French ได้ทดสอบการ ทดลองโดยใช้แบบจำลอง CAPM โดยใช้ข้อมูลแบบ อนุกรมเวลา เพื่อดูความสัมพันธ์ระหว่างอัตราผล ตอบแทนของหลักทรัพย์กับอัตราผลตอบแทนของ ตลาดได้สมการดังนี้

$$
R_{i}-R_{f}=\alpha_{f}+S_{i}\left(R_{m}-R_{f}\right)+e_{t}
$$

ขั้นต่อมา ได้ทดสอบการทดลองโดยสร้างตาราง ใช้ข้อมูลอนุกรมเวลา เพื่อดูความสัมพันธ์ระหว่าง อัตราผลตอบแทนกับขนาดของหลักทรัพย์ (SMB) อัตราส่วนมูลค่าหลักทรัพย์ตามบัญชีต่อราคาตลาด (HMB) ดังสมการ

$$
R_{i}-R_{f}=\alpha_{f}+S_{i}(\mathrm{SMB})+H_{i}(\mathrm{HML})+e_{t}
$$

สุดท้าย Fama and French ได้ทดสอบการ ทดลองโดยใช้แบบจำลอง Fama and French โดยใช้ ข้อมูลอนุกรมเวลา เพื่อดูความสัมพันธ์ระหว่างอัตรา ผลตอบแทนของหลักทรัพย์ กับอัตราผลตอบแทนของ ตลาด ขนาดของธุรกิจ (SMB) และอัตราส่วนมูลค่า หลักทรัพย์ตามบัญชี่ต่อราคาตลาด (HML) ได้สมการ ดังนี้
$R_{i}-R_{f}=\alpha_{f}+\beta_{i}\left(R_{m}-R_{f}\right)+S_{i}(\mathrm{SMB})+H_{i}(\mathrm{HML})+e_{t}$

งานวิจัยที่เกี่ยวข้อง

วัชระพันธ์แตง (2551) ได้ศึกษาการเปรียบเทียบ ความสามารถของแบบจำลอง CAPM APTและ Fama-French ในการทำนายอัตราผลตอบแทน ของกลุ่มหลักทรัพย์ SET 50 ซึ่งเก็บข้อมูลในช่วงปี พ.ศ. 2541-2550 จากธนาคารแห่งประเทศไทย และฐานข้อมูลเศรษฐศาสตร์ (dx for windows) ผลการวิจัย พบว่า แบบจำลอง Fama French สามารถทำนายอัตราผลตอบแทนของหลักทรัพย์ กลุ่ม SET50 ได้ดีกว่าแบบจำลอง CAPM และ APT นอกจากนี้ ยังพบว่า แบบจำลอง CAPM สามารถ ทำนายอัตราผลตอบแทนกลุ่ม SET 50 ได้ดีกว่า แบบจำลอง APT

มนัสนันท์ ศรีหมากสุก (2550) ได้ทดสอบ แบบจำลอง Fama-French ในตลาดหลักทรัพย์แห่ง

ประเทศไทยในกลุ่มพลังงาน โดยมีวัตถุประสงค์เพื่อ ทำนายอัตราผลตอบแทนของกลุ่มหลักทรัพย์ โดยใช้ ข้อมูลทุติยภูมิตั้งแต่เดือนมกราคม พ.ศ. 2546 ถึงเดือนธันวาคม พ.ศ. 2550 ผลจากการศึกษา พบว่า การเพิ่มปัจจัย 2 ปัจจัย ได้แก่ ปัจจัยขนาด และ ปัจจัยอัตราส่วนมูลค่าหลักทรัพย์ตามบัญชีต่อราคา ตลาดเข้าไปใน CAPM นั้น มีนัยสำคัญทางสถิติ ต่อการอธิบายความผันผวนของความเสี่ยงและอัตรา ผลตอบแทนของหลักทรัพย์ได้

เครื่องมือที่ใช้ในการวิจัย

Standard Multivariate Regression
เป็นการนำอัตราผลตอบแทนที่ผิดปกติ หรือ ค่าอัตราผลตอบแทนที่คาดการณ์ไม่ได้ด้วยแบบ จำลอง CAPM และ Fama-French (Intercept: a) มาทดสอบ เพราะอัตราผลตอบที่นำมาใช้ในวิธีนี้เป็น อัตราผลตอบแทนส่วนเกินจากอัตราผลตอบแทนที่ ไม่มีความเสี่ยง แบบจำลองใดมีประสิทธิภาพ ค่า Intercept จะผ่านจุดศูนย์อย่างมีนัยสำคัญ หรือ อีกนัยหนึ่ง ถ้าแบบจำลองใดเป็นแบบจำลองที่มี ประสิทธิภาพ ค่าที่ได้จะเป็นดังสมการต่อไปนี้

กรณีแบบจำลอง CAPM
$R_{i}-R_{f}=b_{i}\left(R_{m}-R_{f}\right)$
กรณีแบบจำลอง Fama-French
$R_{i}-R_{f}=b_{i}\left(R_{m}-R_{f}\right)+c_{i}\left(R_{\text {SMB }}\right)+d_{i}\left(R_{\text {HML }}\right)$
ดังนั้น วิธี Standard Multivariate Regression นี้ จึงเป็นการทำสอบโดยใช้ t -test ทดสอบสมมติฐาน
$\mathrm{H}_{0}: \mathrm{a}_{\mathrm{i}}=0$ (เส้นตรงแสดงความสัมพันธ์ระหว่าง ตัวแปรอิสระและตัวแปรตามไม่ผ่านจุดศูนย์)
$\mathrm{H}_{1}: \mathrm{a}_{\mathrm{i}} \neq 0$ (เส้นตรงแสดงความสัมพันธ์ระหว่างตัวแปร อิสระและตัวแปรตามผ่านจุดศูนย์)

Davidson and Mackinnon Equation

เป็นการเปรียบเทียบความสามารถในการ ทำนายอัตราผลตอบแทนของหลักทรัพย์ โดยอาศัย สมการถดถอย ดังนี้
$\mathrm{R}_{\mathrm{i}}=\mathrm{K}\left(\mathrm{R}_{\mathrm{i}, \mathrm{CAPM}}\right)+(1-\mathrm{K})\left(\mathrm{R}_{\mathrm{i}, \mathrm{FF}}\right)+\mathrm{e}_{\mathrm{i}}$
เมื่อ R_{i} คือ อัตราผลตอบแทนของหลักทรัพย์ i ที่เกิดขึ้นจริง
K คือ ค่าสัมประสิทธิ์
$\mathrm{R}_{\mathrm{i}, \mathrm{CAPM}}$ คือ อัตราผลตอบแทนของหลักทรัพย์ i ที่ได้จากการประมาณการโดย แบบจำลอง CAPM
$\mathrm{R}_{\mathrm{i}, \mathrm{FF}}$ คือ อัตราผลตอบแทนของหลักทรัพย์ i ที่ได้จากการประมาณการโดย แบบจำลอง Fama-French

วิธี Davidson and Mackinnon Equation เป็นการนำอัตราผลตอบแทนที่ได้จากแบบจำลอง ต่าง ๆ มาเป็นตัวแปรอิสระ เพื่อหาค่าสัมประสิทธิ์ K และถ้าค่าสัมประสิทธิ์ตัวใดมีค่าเข้าใกล้ 1 มากที่สุด แสดงว่าแบบจำลองตัวมีประสิทธิภาพมากที่สุดในการ ทำนายอัตราผลตอบแทนของหลักทรัพย์

Residual Analysis

เป็นการวิเคราะห์ว่า ถ้าแบบจำลองใดมีประสิทธิภาพในการทำนายอัตราผลตอบแทนของหลักทรัพย์ อัตราผลตอบแทนของหลักทรัพย์ i จะถูกกำหนด โดยค่าสัมประสิทธิ์ของแบบจำลองนั้น และค่าความ คลาดเคลื่อน $\left(\varepsilon_{\mathrm{i}}\right)$ ไม่สามารถคาดการณ์ได้ด้วย ปัจจัยจากแบบจำลองอื่น ๆ ถ้าค่าความคลาดเคลื่อน

$\left(\varepsilon_{i}\right)$ สามารถคาดการณ์ได้ด้วยปัจจัยจากแบบจำลอง อื่น ๆ แสดงว่าแบบจำลองนั้นไม่มีประสิทธิภาพใน การทำนายอัตราผลตอบแทนของหลักทรัพย์ ดังนั้น วิธีหนึ่งที่จะใช้ในการทดสอบ คือ การประมาณการ สมการถดถอย ซึ่งทดสอบได้ ดังนี้

กรณีทดสอบแบบจำลอง CAPM
$\varepsilon_{\mathrm{i}, \mathrm{t}}=(\mathrm{CAPM})=\lambda_{0 \mathrm{i}}+\lambda_{\mathrm{li}}\left(\mathrm{R}_{\mathrm{m}, \mathrm{t}}+\mathrm{R}_{\mathrm{i}, \mathrm{t}}\right)+\lambda_{2 \mathrm{i}} \mathrm{SMB}_{\mathrm{t}}$ $\lambda_{3 i} \mathrm{HML}_{\mathrm{t}}+\mathrm{e}_{\mathrm{i}}$

กรณีทดสอบแบบจำลอง Fama-French
$\varepsilon_{\mathrm{i}, \mathrm{t}}=(\mathrm{FF})=\lambda_{0 \mathrm{i}}+\lambda_{\mathrm{li}}\left(\mathrm{R}_{\mathrm{m}, \mathrm{t}}+\mathrm{R}_{\mathrm{i}, \mathrm{t}}\right)+\mathrm{e}_{\mathrm{i}}$

เป็นการกำหนดให้ค่าความคลาดเคลื่อนเป็น ตัวแปรตาม และตัวแปรอิสระจะเป็นปัจจัยที่ได้จาก แบบจำลองอื่น ๆ เพื่อพิจารณาว่า ตัวแปรตามสามารถ อธิบายได้ด้วยตัวแปรอิสระอย่างมีนัยสำคัญหรือไม่

ดังนั้น การทดสอบนี้จะทดสอบโดยใช้ t -test เพื่อทดสอบสมมติฐาน ดังนี้

$$
\begin{aligned}
& \mathrm{H}_{0}=\lambda_{\mathrm{i}}=0 ; \mathrm{i}=1,2, \ldots \mathrm{n} \\
& \mathrm{H}_{1}=\lambda_{\mathrm{i}} \neq 0
\end{aligned}
$$

ถ้าแบบจำลองใดมีประลิทธิภาาพในารทำนาย อัตราผลตอบแทนของหลักทรัพย์ ค่าความคลาดเคลื่อน ที่ได้จากแบบจำลองนั้นจะไม่สามารถคาดการณ์ได้ ด้วยตัวแปรใด ๆ ในแบบจำลองอื่น ๆ

ผลการวิเคราะห์ข้อมูล

การศึกษาเปรียบเทียบความสามารถของ แบบจำลอง CAPM และ Fama-French ในการ ประมาณการอัตราผลตอบ แทนของหลักทรัพย์ หมวดพลังงานและสาธารณูปโภคในตลาดหลักทรัพย์ แห่งประเทศไทย สามารถสรุปผลการวิเคราะห์ข้อมูล ได้ดังนี้

ตารางที่ 1 การศึกษาการเปรียบเทียบความสามารถในการวิเคราะห์อัตราผลตอบแทนของหลักทรัพย์ด้วยวิธี Standard Multivariate Regression วิธี Davidson and Mackinnon Equation และวิธี Residual Analysis

หลักทรัพย์	Standard Multivariate Regression		Davidson and Mackinnon Equation		Residual Analysis			
	CAPM	Fama- French	CAPM	Fama- French	CAPM			Fama- French
					$\lambda 1$	$\lambda 2$	$\lambda 3$	
AI		$(-2.177)^{* *}$		$(6.016)^{* * *}$		$(-3.789)^{* * *}$	(-1.829)*	
AKR	(-1.809)*	$(-1.930)^{*}$		$(4.345)^{* * *}$				
BAFS		$(-2.083)^{* *}$		$(7.101)^{* * *}$		$(-2.880)^{* * *}$	(1.782)*	
BANPU				$(6.249) * * *$	$(-2.282)^{* *}$	$(-5.644)^{* * *}$		
BCP				$(4.477)^{* * *}$		$(-2.739) * *$		
DEMCO				(2.026)**				
EASTW				(2.278)**		(-1.928)*		
EGCO		$(-2.448)^{* *}$		(2.567)**		$(-2.067)^{* *}$		
GLOW				$(4.923) * * *$		$(-2.304)^{* *}$		
IRPC		$(-1.722)^{*}$		$(3.101)^{* * *}$		$(-2.183)^{* *}$		
LANNA				$(7.100)^{* * *}$		$(-4.636)^{* * *}$		
MDX				(2.889)***				
PTT		$(-5.039)^{* * *}$		$(9.122) * * *$	$(-5.187)^{* * *}$	$(-6.888)^{* * *}$		
PTTEP		$(-3.611)^{* * *}$		(6.585)***	$(-3.461)^{* * *}$	$(-5.195)^{* * *}$		
RATCH	$(-2.038)^{* *}$	$(-2.587)^{* * *}$		$(4.055)^{* * *}$		$(-3.002)^{* * *}$		
RPC	$(-1.881)^{* *}$	$(-2.565)^{* *}$		(4.960)***	(17.236)***	(1.697)*		
SCG	$(-7.761)^{* * *}$	$(-8.366)^{* * *}$		$(3.139) * * *$		$(-2.068)^{\star *}$		
SOLAR				$(4.577)^{* * *}$		$(-2.807)^{* * *}$		
SPCG								
SUSCO				(2.442)**		$(-1.778)^{*}$		
TCC				(2.759)***				
TOP		$(-1.692)^{*}$		(4.857)***	(-1.728)*	$(-3.534)^{* * *}$		

หมายเหตุ: ค่าในวงเล็บ คือ ค่า t-stat; สัญลักษณ์ ***, ** * แสดงระดับนัยสำคัญที่ $1 \%, 5 \%, 10 \%$ ตามลำดับ; ช่องที่เว้นว่าง แสดงถึงการไมมมีนัยลำคัญทางสถิดิ

สรุป อภิปรายผล และข้อเสนอแนะ

การศึกษาเปรียบเทียบความสามารถในการ ประมาณการอัตราผลตอบแทนของหลักทรัพย์ด้วยวิธี Standard Multivariate Regression วิธี Davidson and Mackinnon Equation และวิธี Residual Analysis โดยใช้ข้อมูลตั้งแต่เดือนกันยายน พ.ศ. 2550 ถึงเดือนลิงหาคม พ.ศ. 2555 สามารถสรุป ผลการศึกษาได้ดังนี้

จากวิธี Standard Multivariate Regression $C A P M$ สามารถประมาณการอัตราผลตอบแทนของ หลักทรัพย์ AKR, RATCH, RPC และ SCG ได้ อย่างมีนัยสำคัญทางสถิติ รวมทั้งสิ้น 4 หลักทรัพย์ ส่วน Fama-French สามารถประมาณการอัตราผล ตอบแทนของหลักทรัพย์ AI, AKR, BAFS, EGCO, IRPC, PTT, PTTEP, RATCH, RPC, SCG และ TOP ได้อย่างมีนัยสำคัญทางสถิติ รวมทั้งสิ้น 11 หลักทรัพย์

จากวิธี Davidson and Mackinnon Equation CAPM ไม่สามารถประมาณการอัตราผลตอบแทน ของหลักทรัพย์ใดได้อย่างมีนัยสำคัญทางสถิติ ส่วน Fama-French สามารถประมาณการอัตราผล ตอบแทนของหลักทรัพย์ $A I, A K R, B A F S, ~ B A N P U$, BCP, DEMCO, EASTW, EGCO, GLOW, IRPC, LANNA, MDX, PTT, PTTEP, RATCH, RPC, SCG, SOLAR, SUSCO, TCC และ TOP ได้อย่างมี นัยสำคัญทางสถิติ รวมทั้งสิ้น 21 หลักทรัพย์

จากวิธี Residual Analysis CAPM ไม่สามารถ ประมาณการอัตราผลตอบแทนของหลักทรัพย์ใด ได้อย่างมีนัยสำคัญทางสถิติ ส่วน Fama-French สามารถประมาณการอัตราผลตอบแทนของหลักทรัพย์ Al, BAFS, BANPU, BCP, EASTW, EGCO, GLOW,

IRPC, LANNA, PTT, PTTEP, RATCH, RPC, SCG, SOLAR, SUSCO และ TOP ได้อย่างมีนัยสำคัญทาง สถิติ รวมทั้งสิ้น 17 หลักทรัพย์

จะเห็นได้ว่า แบบจำลอง Fama-French มี ความสามารถในการประมาณการอัตราผลตอบแทน ของหลักทรัพย์กลุ่มอุตสาหกรรมพลังงานและ สาธารณูปโภคในตลาดหลักทรัพย์แห่งประเทศไทย ได้ดีกว่าแบบจำลอง CAPM ซึ่งสอดคล้องกับงานวิจัย ของ วัชระ พันธ์แตง (2551) และ มนัสนันท์ ศรีหมากสุก (2550) ทั้งนี้เนื่องมาจากตัวแปรส่วน ชดเชยความเสี่ยงในแบบจำลอง CAPM นั้น ไม่เพียง พอที่จะใช้การประมาณการอัตราผลตอบแทนของ หลักทรัพย์ เพราะนักลงทุนต้องการอัตราผลตอบแทน ที่จจชดเชยความเสี่ยงอื่น ๆ นอกเหนือจากความเสี่ยง ตลาด ในทางกลับกัน แบบจำลอง Fama-French มี ตัวแปรอีก 2 ปัจจัยที่เพิ่มเติมจากแบบจำลอง CAPM ได้แก่ ปัจจัยขนาด และปัจจัยอัตราส่วนมูลค่า หลักทรัพย์ตามบัญชีต่อราคาตลาด จึงเป็นสาเหตุที่ ทำให้แบบจำลอง Fama-French มีความสามารถใน การประมาณการอัตราผลตอบแทนของหลักทรัพย์ได้ ดีกว่าแบบจำลอง CAPM

อย่างไรก็ตาม การศึกษานี้ใช้ข้อมูลอัตราผล ตอบแทนของหลักทรัพย์กลุ่มอุตสาหกรรมพลังงาน และสาธารณูปโภคในตลาดหลักทรับย์แห่งประเทศไทย ในช่วงเดือนกันยายน พ.ศ. 2550 ถึงเดือนสิงหาคม พ.ศ. 2555 เท่านั้น การศึกษาครั้งต่อไปควรมีการเก็บ ข้อมูลในช่วงระยะเวลาที่ยาวนานขึ้น อีกทั้งการศึกษา ครั้งต่อไปควรศึกษาหลักทรัพย์ในกลุ่มอุตสาหกรรม อื่น $ๆ$ เพื่อให้ผลการศึกษาเปรียบเทียบความสามารถ ในประมาณการอัตราผลตอบแทนของหลักทรัพย์นั้น มีประสิทธิภาพยิ่งขึ้น

บรรณานุกรม

Banchuenvijit, Wanrapee, and Choochuen, Sunisa. 2013. "Stock Exchange of Thailand Market Efficiency." University of the Thai Chamber of Commerce Journal 33, 1: 68-80. (in Thai).
วรรณรพี บานชื่นวิจิตร และสุนิสา ชูชื่น. 2556 . "ความมีประสิทธิภาพของตลาดหลักทรัพย์แห่ง ประเทศไทย." วารสารวิชาการ มหาวิทยาลัย หอการค้าไทย 33,1 : 68-80.

Kumsap, Petcharee. 1997. Principle of Investment. Bangkok: Thammasat Publishing House. (in Thai).
เพชรี ขุมทรัพย์. 2540. หลักการลงทุน. กรุงเทพมหานคร: โรงพิมพ์มหาวิทยาลัยธรรมศาสตร์.

Pantang, Watchara. 2008. "The Comparison of the Ability of CAPM, APT and FamaFrench in Analyzing Rates of Return of Securities in SET 50." Master's Thesis, School of Business, Graduate School, University of the Thai Chamber of Commerce. (in Thai).
วัชระ พันธ์แตง. 2551. "การเปรียบเทียบความ สามารถของแบบจำลอง $\operatorname{CAPM}, A P T$ และ Fama-French ในการวิเคราะห์อัตราผล ตอบแทนของหลักทรัพย์กลุ่ม SET 50." วิทยานิพนธ์ปริญญาบริหารธุรกิจมหาบัณฑิต คณะบริหารธุรกิจ บัณฑิตวิทยาลัย มหาวิทยาลัย หอการค้าไทย.

Srimaksuk, Manassanan. 2007. "Testing FamaFrench Three Factors Models in the Stock Exchange of Thailand in Energy Sector."

Master's Thesis, School of Business, Graduate School, University of the Thai Chamber of Commerce. (in Thai).

มนัสนันท์ ศรีหมากสุก. 2550. "การทดสอบแบบ จำลอง Fama-French three factor models ในตลาดหลักทรัพย์แห่งประเทศไทย ในกลุ่ม พลังงาน." วิทยานิพนธ์ปริญญาบริหารธุรกิจ มหาบัณฑิต คณะบริหารธุรกิจ บัณฑิตวิทยาลัย มหาวิทยาลัยหอการค้าไทย.

Sungkaew, Chirat. 2001. Investment. Bangkok: Thammasat Publishing House. (in Thai). จิรัตน์ สังข์แก้ว. 2544. การลงทุน. กรุงเทพมหานคร: โรงพิมพ์มหาวิทยาลัยธรรมศาสตร์.

Thailand. The Stock Exchange of Thailand. 2012A. Security Market Line (SML) [Online]. Available: http://www.set.or.th/ education/th/education.html (in Thai). ตลาดหลักทรัพย์แห่งประเทศไทย. 2555ก. เส้น SML [ออนไลน์]. เข้าถึงจาก: http://www.set.or.th/ education/th/education.html

Thailand. The Stock Exchange of Thailand. 2012B. Trade Volume by Industries from September 2007 to August 2012 [Online]. Available: http://www.set.or.th/th/market/ market_statistics.html (in Thai).
ตลาดหลักทรัพย์แห่งประเทศไทย. 2555ข. มูลค่า การซื้อขายหลักทรัพย์แยกตามกลุ่มอุตสาหกรรมระหว่างเดือนกันยายน พ.ศ. 2550 ถึง เดือนสิงหาคม พ.ศ. 2555 [ออนไลน์]. เข้าถึง จาก: http://www.set.or.th/th/market/ market_statistics.html

Wonglorsaichon, Phusit, and Banchuenvijit, Wanrapee. 2008. "Family Business

Companies Listed on the Stock Exchange of Thailand." University of the Thai Chamber of Commerce Journal 28, 3: 44-56. (in Thai).

ภูษิต วงศ์หล่อสายชล และวรรณรพี บานชื่นวิจิตร. 2551. "ธุรกิจครอบครัวของบริษัทจดทะเบียน ในตลาดหลักทรัพย์แห่งประเทศไทย." วารสาร วิชาการ มหาวิทยาลัยหอการค้าไทย 28,3 : 44-56.

Wanrapee Banchuenvijit received her Ph.D. in Finance from Southern Illinois University, Carbondale, U.S.A. She is currently an assistant professor at the School of Business, University of the Thai Chamber of Commerce. Her recent research includes international finance, corporate finance and corporate governance.

