การหาшลลัแธ์ของการโUsıกกsuเชิทเสัuโดยใช้ iSolveModel Apps iSolveModel Apps on iPad for Linear Programming Problem Solving

uกาws จุทยาuจุตักุุล

Napaporn Utayanwutigul
Information and Communication Technology Management,
School of Science and Technology, University of The Thai Chamber of Commerce
E-mail: napaporn_uta@utcc.ac.th

บทคัดย่อ
บทความนี้แนะนำการใช้ iSolveModel Apps ซึ่งเป็นโปรแกรมบน iPad สำหรับการหาผลลัพธ์ของ การโปรแกรมเชิงเส้น iSolveModel Apps สามารถใช้หาผลลัพธ์ของปัญหาการโปรแกรมเชิงเส้นในกรณีที่มี จำนวนตัวแปรการตัดสินใจหลายตัว นอกจากการแนะนำการหาผลลัพธ์ของการโปรแกรมเชิงเส้นแล้วใน บทความนี้ได้แสดงการประยุกต์ iSolveModel Apps สำหรับการหาผลลัพธ์ในการแก้ปัญหาการขนส่งและ การจัดสรรงาน

คำสำคัญ: การโปรแกรมเชิงเส้น iSolveModel Apps iPad

Abstract

In this article, iSolveModel Apps on iPad is introduced. An application program for linear programming problem solving it can solve some linear programming problems with many decision variables. Moreover, some applications based on transportation problems and assignment problems are included as illustrations for using the iSolveModel Apps.

Keywords: Linear programing, iSolveModel Apps, iPad

บทนำ

ปัญหาทางธุรกิจเป็นปัญหาที่ต้องการหาผลประโยชน์สูงสุดภายใต้ข้อจำกัด เช่น การนำเข้าของเครื่องจักร การสั่งวัตถุดิบ การจ้างแรงงาน และทุน ที่มาใช้ในการผลิตสินค้าหรือการให้บริการ ดังนั้น การโปรแกรมเชิงเส้น (Linear Programming) ซึ่งเป็นวิธีการหาค่าต่ำสุดหรือสูงสุดของตัวแปรการตัดสินใจ (Decision Variable) จึง เป็นวิธีที่นิยมในการใช้แก้ปัญหาดังกล่าว การโปรแกรมเชิงเส้นเริ่มจากการสร้าง ตัวแบบทางคณิตศาสตร์ (Model Formulation) ประกอบด้วย ฟังก์ชันเป้าหมาย (Objective Function) และข้อจำกัด (Constraints) การหาผลลัพธ์ ของการโปรแกรมเชิงเส้นสามารถหาได้โดยวิธี Graphical Method, Simplex Method, Spread Sheet Method เป็นต้น ในกรณีที่ปัญหาทางธุรกิจมีตัวแปรการตัดลินใจหลายตัว การหาผลลัพธ์จะมีความยุ่งยากและซับซ้อน มากขึ้น การวิเคราะห์ต้องจำเป็นต้องใช้โปรแกรมสำเร็จรูปช่วยในการคำนวณหาผลลัพธ์ เช่น LINDO, WinOM หรือ OM for Windows และ Microsoft Excel Solver ([3]) ปัจจุบันความก้าวหน้าทางเทคโนโลยีของอุปกรณ์
 ที่สามารถใช้วิเคราะห์ในอุปกรณ์พกพาได้ บริษัท MINDTech เป็นบริษัทหนึ่งที่สร้างแอพลิเคชัน iSolveModel สำหรับการวิเคราะห์โปรแกรมเชิงเส้นในอุปกรณ์พกพา ทำให้ผู้สอนสามารถใช้เป็นทางเลือกหนึ่งสำหรับการสอน การโปรแกรมเชิงเส้นในชั้นเรียนและผู้เรียนสามารถหาผลลัพธ์ได้อย่างรวดเร็ว บทความนี้เป็นการแนะนำ การหาผลลัพธ์การโปรแกรมเชิงเส้นโดยใช้ iSolveModel Apps บน iPad

1. การสร้างตัวแบบทางคณิตศาสตร์จากปัญหาทางธุรกิจ

เมื่อเราพบปัญหาในธรรมชาติเราสามารถแปลงให้อยู่ในรูปของตัวแบบทางคณิตศาสตร์ โดยจะกำหนด ตัวแปรการตัดสินใจของปัญหา แล้วนำตัวแปรการตัดสินใจดังกล่าวไปสร้างตัวแบบทางคณิตศาสตร์ ([6]) การ โปรแกรมเชิงเส้นจัดว่าเป็นตัวแบบทางคณิตศาสตร์จึงประกอบด้วยฟังก์ชันเป้าหมาย (Objective Function) และ ข้อจำกัด (Constraints) ซึ่งเหมาะสำหรับปัญหาที่ต้องการหาค่าสูงสุดหรือค่าต่ำสุด โดยจะหาค่าสูงสุดหรือค่าต่ำ สุดของฟังก์ชันเป้าหมาย ภายใต้ข้อจำกัดซึ่งอยู่ในรูปสมการหรืออสมการของตัวแปรตัดสินใจ ([1], [2]) พิจารณา ตัวอย่างปัญหาที่ต้องการหาต้นทุนต่ำที่สุด ดังต่อไปนี้

บริษัทไทยสุข มีคลังสินค้าใหญ่ 1 แห่ง และคลังสินค้าย่อย 2 แห่ง สินค้าจะถูกส่งจากคลังสินค้าย่อย ไปตามใบสั่งซื้อของลูกค้า แต่ไม่ส่งตรงจากคลังสินค้าใหญ่ การจัดส่งสินค้าไปยังคลังสินค้าย่อยทั้งสองจะต้อง เสียค่าใช้จ่ายหน่วยละ 10 บาท และ 12 บาท ตามลำดับ คลังสินค้าใหญ่สามารถจ่ายสินค้าได้ สัปดาห์ละไม่เกิน 1,000 หน่วย คลังสินค้าย่อยทั้งสองแห่งต้องการสินค้าอย่างต่ำแห่งละ 400 หน่วย บริษัทมีจุดประสงค์ที่จะควบคุม ต้นทุนการจัดส่งสินค้าให้ต่ำที่สุด บริษัทควรจัดส่งสินค้าให้คลังสินค้าย่อยแต่ละแห่งจำนวนเท่าใด

จากปัญหานี้ จะสร้างตัวแบบทางคณิตศาสตร์ในรูปของการโปรแกรมเชิงเส้นแล้วหาผลลัพธ์ของตัวแบบ ดังกล่าว

กำหนดตัวแปรการตัดสินใจ :

ให้ Z แทนค่าใช้จ่ายทั้งหมดในการส่งสินค้าจากคลังสินค้าใหญ่ไปยังคลังสินค้า ย่อย 2 แห่ง
ให้ x และ y แทนจำนวนสินค้าที่คลังสินค้าใหญ่จ่ายให้คลังสินค้าย่อยที่ 1 และที่ 2 ตามลำดับ ตัวแบบทางคณิตศาสตร์
หาค่าต่ำสุดของฟังก์ชันเป้าหมาย ภายใต้ข้อจำกัด

$$
\begin{aligned}
\mathrm{Z} & =10 \mathrm{x}+12 \mathrm{y} \\
\mathrm{x}+\mathrm{y} & \leq 1000 \\
\mathrm{x} & \geq 400 \\
\mathrm{y} & \geq 400 \\
\mathrm{x} & \geq 0 ; \mathrm{y} \geq 0
\end{aligned}
$$

2. การหาผลลัพธ์ของการโปรแกรมเชิงเส้น

การหาผลลัพธ์ของการโปรแกรมเชิงเส้นสามารถหาได้โดยวิธีกราฟ โดยการเขียนกราฟของข้อจำกัด เพื่อกำหนดบริเวณที่เป็นเซตของค่าผลลัพธ์ที่เป็นไปได้ทั้งหมด ซึ่งมีทฤษฆีบทกล่าวว่า ค่าสูงสุด(หรือค่าต่ำสุด) ของฟังก์ชันเป้าหมาย $z=f(x, y)$ บนบริเวณรูปหลายเหลี่ยมนูน (convex polygon) จะอยู่ที่จุดยอดของรูป หลายเหลี่ยมนูน ทั้งนี้วีธีกราฟจะใช้หาคำตอบของการโปรแกรมเชิงเส้นที่มีตัวแปรตัดสินใจ 2 และ 3 ตัวเท่านั้น นอกจากนี้ ยังสามารถหาผลลัพธ์ของการโปรแกรมเชิงเส้นด้วยวิธีซิมเพล็กซ์ซึ่งเป็นวิธีเชิงพีชคณิตที่พัฒนา มาจากวิธีกราฟและสามารถใช้หาผลลัพธ์ของการโปรแกรมเชิงเส้นที่มีตัวแปรการตัดิินใจมากกว่า 3 ตัว ([1], [2]) ในบทความนี้จะใช้ iSolveModel Apps แสดงการหาผลลัพธ์ของการโปรแกรมเชิงเส้นตามลำดับต่อไป

การแก้ปัญหาตัวแบบการโปรแกรมเชิงเส้น ด้วย iSolveModel Apps

iSolveModel Apps ([4]) เป็นแอพลิเคชันสำหรับการหาผลลัพธ์การโปรแกรมเชิงเส้น ซึ่งเป็น แอพลิเคชันบน $\mathrm{iPad} / \mathrm{iPhone} / \mathrm{iPod}$ โดยพัฒนาการหาผลลัพธ์ด้วยวิธีซิมเพล็ก

การหาผลลัพธ์ด้วย iSolveModel Apps บน iPad จะเริ่มต้นด้วยป้อนรายละเอียดของตัวแบบการ โปรแกรมเชิงเส้นที่กำหนดลงในหน้าจอ Model ของ iSolveModel Apps ซึ่งมีรูปแบบ ดังนี้ Max/Min

Subject to

endmodel

เมื่อป้อนรายละเอียดของตัวแบบการโปรแกรมเชิงเส้นแล้วเลือกปุ่ม \mathbb{C} ซึ่ง iSolveModel จะแสดง ผลลัพธ์ตัวแบบการโปรแกรมเชิงเส้น ถ้าตัวแบบนั้นสามารถหาผลลัพธ์ได้ ดังเช่นการหาผลลัพธ์ของตัวแบบ การโปรแกรมเชิงเส้นสำหรับตัวอย่างปัญหาที่ต้องการหาต้นทุนต่ำที่สุดของบริษัทไทยสุข

ภาพที่ 1 แสดงคำสั่งที่เขียนและผลลัพธ์การวิเคราะห์บริษัทไทยสุขด้วย iSolveModel Apps ในหน้าจอ Model จากภาพที่ 1 บริษัทไทยสุขควรจัดส่งสินค้าจากคลังสินค้าใหญ่ไปยังคลังสินค้าย่อยทั้งสอง โดยมีค่าใช้จ่าย ต่ำสุดคือ 4,800 บาท

Model: Model view

Model

Solution

Variables

Constraints

Final Tableau
Solution: Solution view after optimization is done

Variables: Variables solution view

Constraints: Contraints solution view

Final Tableau: Final tableau solution view

ภาพที่ 2 แสดงปุ่มต่าง ๆ ของ iSolveModel Apps

จากภาพที่ 2 หน้าจอของ iSolveModel Apps มีส่วนประกอบดังนี้ Model View, Solution, Constrains และ Final Tableau

ภาพที่ 3 แสดงรายละเอียดของผลลัพธ์เมื่อเลือกปุ่ม Solution
จากภาพที่ 3 ผลลัพธ์ที่เหมาะสมหาค่าได้ ซึ่งฟังก์ชันเป้าหมายมีค่าเป็น 4,800 บาท จำนวนตัวแปร ตัดสินใจเป็นเชิงปริมาณทั้ง 2 ตัวแปร มีข้อจำกัด 5 ข้อ ข้อจำกัดที่มีเครื่องหมายน้อยกว่าเท่ากับ (<=) มี 1 ข้อ และข้อจำกัดที่มีเครื่องหมายมากกว่าเท่ากับ (>=) มี 4 ข้อ

ภาพที่ 4 แสดงรายละเอียดของผลลัพธ์เมื่อเลือกปุ่ม Variables

จากภาพที่ 4 บริษัทไทยสุขส่งสินค้าจากคลังใหญ่ไปยังให้คลังสินค้าย่อยที่ 1 และที่ 2 จำนวน 400 หน่วย เท่ากัน

Solution for constraints				
Variable			Slack/Surplus	Shadow Price
SLK				
S				

ภาพที่ 5 แสดงรายละเอียดของผลลัพธ์เมื่อเลือกปุ่ม Constrains
จากภาพที่ 5 แสดงค่าตัวแปรขาด/ตัวแปรเกินสำหรับข้อจำกัด

1 Pad ${ }^{\text {- }}$								4:43 PM	
Final tableau after optimization									
Row	Basis	Optimal Value	\mathbf{x}	y	$\text { SLK } 1$	$\text { SLK } 2$	$\text { SLK } 3$	$\text { SLK } 4$	$\text { SLK } 5$
0		4800	0	0	0	-10	-2	0	0
1	$\text { SLK } 1$	200	0	0	1	1	1	0	0
2	SLK 4	400	0	0	0	-1	0	1	0
3	SLK 5	400	0	0	0	0	-1	0	1
4	x	400	1	0	0	-1	0	0	0
5	y	400	0	1	0	0	-1	0	0

ภาพที่ 6 แสดงรายละเอียดของผลลัพธ์เมื่อเลือกปุ่ม Final tableau

จากภาพที่ 6 แสดงผลลัพธ์ที่เหมาะสม นั่นคือจำนวนสินค้าที่คลังสินค้าใหญ่ส่งไปยังคลังสินค้าย่อยที่ 1 จำนวน 400 หน่วยและคลังสินค้าย่อยที่ 2 จำนวน 400 หน่วย ซึ่งทำให้บริษัทไทยสุขเสียค่าใช้จ่าย 4,800 บาท ซึ่งเป็นค่าใช้จ่ายต่ำที่สุดภายใต้สถานการณ์ข้างต้น

การหาผลลัพธ์ตัวแบบการขนส่ง

ตัวแบบการขนส่ง (Transportation Model) เป็นตัวแบบที่เกี่ยวกับปัญหาการจัดสรรสินค้าจาก จุดต้นทาง (Sources) เช่น โรงงาน แหล่งวัตถุดิบ โกดังสินค้า ที่มีหลาย ๆ แห่งไปยังจุดหมายปลายทาง (Destinations) หลาย ๆ แห่ง โดยมีวัตถุประสงค์ให้เสียค่าใช้จ่ายในการขนส่งรวมทั้งสิ้นต่ำสุด

ตัวแบบการขนส่งเป็นลักษณะหนึ่งของตัวแบบการโปรแกรมเชิงเส้นซึ่งมีจำนวนตัวแปรการตัดสินใจ และข้อจำกัดเป็นจำนวนมาก หากในปัญหาการขนส่งมีเส้นทางการขนส่งมากก็จะส่งผลให้ตัวแบบมีจำนวน ตัวแปรการตัดลินใจและข้อจำกัดเป็นจำนวนมากด้วย ทำให้การหาผลลัพธ์มีความยุยยยากและใช้เวลามากในการ คำนวณ ดังนั้น การใช้แอพลิเคชันบน iPad ช่วยในการหาผลลัพธ์ของตัวแบบการขนส่งจึงเป็นประโยชน์สำหรับ การแก้ปัญหาดังกล่าว

บริษัท ไทยเฟอร์นิชมีโรงงานผลิตโต๊ะทำงาน 3 แห่งที่ ปทุมธานี นครปฐม และระยอง หลังจากผลิตจะ ส่งไปยังโกดังสามแห่ง เป้าหมายของบริษัทคือเลือกเส้นทางการส่งของและปริมาณของที่ส่งที่ทำให้ค่าใช้จ่ายต่ำสุด บริษัท พบว่า ต้นทุนการผลิตโต๊ะแต่ละตัวทั้งสามแห่งไม่แตกต่างกัน ดังนั้น ค่าใช้จ่ายที่ต้องคำนึง ก็คือ ค่าขนส่ง จากโรงงานไปยังโกดังทั้ง 3 แห่ง โดยประมาณการจำนวนการผลิตในแต่ละเดือนของโรงงานแต่ละแห่ง $\left(\mathrm{s}_{1}\right)$ และ จำนวนความต้องการของแต่ละโกดัง (d) และค่าขนส่งต่อโต๊ะหนึ่งตัว $\left(\mathrm{C}_{\mathrm{h}}\right)$ แสดงในตารางการขนส่งดังตารางที่ 1 ตารางที่ 1 แสดงจำนวนความต้องการ จำนวนการผลิต และค่าใช้จ่ายในการส่งโต๊ะจากโรงงานปทุมธานี นครปฐม และระยอง ไปโกดัง 3 แห่ง

โรงงาน	โกดัง			จำนวนการผลิต
	1	2	3	
ปทุมธานี	5	4	3	100
นครปฐม	8	4	3	300
ระยอง	9	7	5	300
จำนวนความต้องการ	300	200	200	700

1. ตัวแบบการโปรแกรมเชิงเส้นสำหรับปัญหาการขนส่ง

กำหนดตัวแปรการตัดสินใจ :
ให้ Z แทนค่าใช้จ่ายทั้งหมดในการส่งโต๊ะจากโรงงานปทุมธานี นครปฐม และระยอง
ไปยังโกดังทั้ง 3 แห่ง
$X_{i j}$ แทนปริมาณของที่ส่งจากโรงงาน i ไปยังโกดัง j
$i=1,2,3$ ($1=$ ปทุมธานี $2=$ นครปฐม $3=$ ระยอง)

และ $j=1,2,3$ ($1=$ โกดัง $12=$ โกดัง $23=$ โกดัง 3)
ดังนั้น ตัวแบบทางคณิตศาสตร์ของปัญหานี้ คือ
หาค่าต่ำสุดของ $\mathrm{Z}=5 \mathrm{X}_{11}+4 \mathrm{X}_{12}+3 \mathrm{X}_{13}+8 \mathrm{X}_{21}+4 \mathrm{X}_{22}+3 \mathrm{X}_{23}+9 \mathrm{X}_{31}+7 \mathrm{X}_{32}+5 \mathrm{X}_{33}$
ภายใต้ข้อจำกัด
$X_{11}+X_{12}+X_{13}=100$
$X_{21}+X_{22}+X_{23}=300$
$X_{31}+X_{32}+X_{33}=300$
$X_{11}+X_{21}+X_{31}=300$
$X_{12}+X_{22}+X_{32}=200$
$X_{13}+X_{23}+X_{33}=200$
$X_{i j} \geq 0$ ลำหรับ $i=1,2,3$ และ $j=1,2,3$
การหาผลลัพธ์ของตัวแบบการขนส่งซึ่งโดยทั่วไปจะใช้วิธี Stepping Stone Method ([7])
2. การหาผลลัพธ์สำหรับตัวแบบการขนส่งด้วย iSolveModel Apps

ภาพที่ 7 แสดงหน้าจอของ Model
จากภาพที่ 7 เมื่อป้อนรายละเอียดของตัวแบบการโปรแกรมเชิงเส้นสำหรับปัญหาการขนส่งแล้วจากนั้น เลือกปุ่ม C ผลลัพธ์ที่ได้แสดงในภาพที่ 8

การหาшลลัแธ์ขอบการโUsı!กsuเธิטเสัuโดยใส้ iSolveModel Apps

ภาพที่ 8 แสดงผลลัพธ์ที่เหมาะสมของตัวแบบการโปรแกรมเชิงเส้นสำหรับปัญหาการขนส่ง

จากภาพที่ 8 บริษัทไทยเฟอร์นิชเสียค่าใช้จ่ายในการขนส่งรวม 3,900 บาท ซึ่งเป็นค่าใช้จ่ายต่ำสุด รายละเอียดของผลการวิเคราะห์เมื่อเลือกปุ่ม Solution, Variables และ Constrains แลดงในภาพที่ 9

IPad ${ }^{\text {- }}$	5:58 PM	58\% ${ }^{+}$
[]		(?)
STATISTICS		
Solution Status		Optimal solution found
Objective Function Z Value		3900
Number of iterations		9
VARIABLES		
Number of variables (all types)		9
Number of continuous variables		9
Number of integer variables		0
Number of binary variables		0
CONSTRAINTS		
Number of constraints (all types)		6
Number of constraints of type <=		0
Number of constraints of type $>=$		0

1 Pad -			IPad -			
Solution for variables						
			Solution for constraints			
Variable	Optimal Value	Reduced Cost				
x 11	100	0	Varia		Slack/Surplus	Shadow Price
x12	0	2				
x13	0	2	SLK	1	0	4
$\times 21$	0	1	SLK	2	0	2
$\times 22$	200	0	SLK	3	0	0
$\times 23$	100	0	SLK	4	0	-9
x31	200	0				-9
x 32	0	1	SLK	5	0	-6
x33	100	0	SLK	6	0	-5

ภาพที่ 9 แสดงผลวิเคราะห์เมื่อเลือก ปุ่ม Solution, Variables และ Constrains

Final tableau after optimization

Row	Basis	Optimal Value	$\mathbf{x} 11$	x12	x13	x21	x22	x23	x31	x32	x33	SLK	$\underset{2}{\text { SLK }}$	$\begin{gathered} \text { SLK } \\ 3 \end{gathered}$	$\begin{gathered} \text { SLK } \\ 4 \end{gathered}$	$\mathbf{S L}$
0		3900	0	2	2	1	0	0	0	1	0	4	2	0	-9	-6
1	x31	200	0	-1	-1	1	0	0	1	0	0	1	0	0	-1	0
2	x33	100	0	1	1	-1	0	0	0	1	1	0	1	0	0	-1
3	$\begin{gathered} \text { SLK } \\ 3 \end{gathered}$	0	0	0	0	0	0	0	0	0	0	-1	-1	1	1	1
4	x11	100	1	1	1	0	0	0	0	0	0	-1	0	0	0	0
5	$\times 22$	200	0	1	0	0	1	0	0	1	0	0	0	0	0	-1
6	x23	100	0	-1	0	1	0	1	0	-1	0	0	-1	0	0	1

ภาพที่ 10 แสดงตารางผลการวิเคราะห์เมื่อเลือกปุ่ม Final Tableau
จากภาพที่ 10 ผลการวิเคราะห์สรุปได้ ดังนี้
ส่งโต๊ะจากโรงงานปทุมธานีไปยังโกดังที่ 1 จำนวน 100 ตัว เสียค่าขนส่งตัวละ 5 บาท ดังนั้น เสียค่าขนส่ง 500 บาท

ส่งโต๊ะจากโรงงานนครปฐมไปยังโกดังที่ 2 จำนวน 200 ตัว เสียค่าขนส่งตัวละ 4 บาท ดังนั้น เสียค่าขนส่ง 800 บาท

ส่งโต๊ะจากโรงงานนครปฐมไปยังโกดังที่ 3 จำนวน 100 ตัว เลียค่าขนส่งตัวละ 3 บาท ดังนั้น เสียค่าขนส่ง 300 บาท

ส่งโต๊ะจากโรงงานระยองไปที่โกดังที่ 1 จำนวน 200 ตัว เสียค่าขนส่งตัวละ 9 บาท ดังนั้น เสียค่าขนส่ง 1,800 บาท

ส่งโต๊ะจากโรงงานระยองไปที่โกดังที่ 3 จำนวน 100 เสียค่าขนส่งตัวละ 5 บาท ดังนั้น เสียค่าขนส่ง 500 บาท

จะได้ว่าบริษัทไทยเฟอร์นิชเสียค่าใช้จ่ายรวม 3,900 บาท ซึ่งเป็นค่าใช้จ่ายต่ำสุดภายใต้ สถานการณ์ข้างต้น

การหาผลลัพธ์ตัวแบบการจัดสรรงาน

ตัวแบบการจัดสรรงาน (Assignment Model) เป็นการหาวิธีที่ดีที่สุดในการจัดคนให้กับงาน โดยมี วัตถุประสงค์เพื่อให้ได้ผลงานที่ดีที่สุดต่อองค์การโดยรวม เพื่อให้ได้ต้นทุนหรือค่าใช้จ่ายที่น้อยที่สุดหรือให้เกิด กำไรรวมได้สูงที่สุด โดยมีข้อกำหนดว่าเมื่อจัดคนใดคนหนึ่งรับงานใดแล้วจะไม่สามารถให้คนคนนั้นรับงานอื่น ได้อีก ดังตัวอย่างต่อไปนี้

บริษัทฟ้าไทย จำกัด ดำเนินกิจการขายและให้บริการซ่อมแซมอุปกรณ์ไฟฟ้า โดยส่งพนักงานขายเป็น ทีมเข้าไปในภาคต่าง ๆ ของประเทศและเนื่องจากพนักงานแต่ละคนมีภูมิลำเนาที่แตกต่างกัน ดังนั้น ค่าใช้จ่ายของ พนักงานแต่ละทีมเมื่อเข้าไปบริการในแต่ละภาคจึงแตกต่างกันด้วย โดยมีค่าใช้จ่าย (หน่วยเป็น 1,000 บาท) ดังตารางที่ 2

ตารางที่ 2 แสดงค่าใช้จ่ายแต่ละทีมไปยังภาคเหนือ กลาง และใต้

ทีมที่ให้บริการ	ภาค		
	เหนือ	กลาง	ใต้
AA	20	21	31
BB	17	16	33
CC	22	19	27

อยากทราบว่าบริษัทฟ้าไทย จำกัด ควรส่งพนักงานทีมไหนไปให้บริการในภาคใดจึงจะเสียค่าใช้จ่ายรวม ต่ำที่สุด

1. ตัวแบบแทนปัญหาการจัดสรรงาน

เราสามารถเขียนปัญหาการจัดสรรงานในรูปตารางเช่นเดียวกับตัวแบบการขนส่ง กำหนดตัวแปรการตัดสินใจ :

Z แทนค่าใช้จ่ายทั้งหมดในการส่งทีมต่าง ๆ ไปยัง ภาคเหนือ ภาคกลาง และภาคใต้
$\mathrm{X}_{\mathrm{ij}}=$ การจัดสรรคนงาน i ให้ทำงาน $\mathrm{j} ; \mathrm{i}=1,2,3, \ldots, \mathrm{nj}=1,2,3, \ldots, \mathrm{n}$
$\mathrm{X}_{\mathrm{ij}}=1$ แสดงว่ามีการจัดสรรคนงาน i ให้ทำงาน j
$\mathrm{X}_{\mathrm{ij}}=0$ แสดงว่าไม่มีการจัดสรรคนงาน i ให้ทำงาน j
$\mathrm{C}_{\mathrm{ij}}=$ ค่าใช้จ่ายในการจัดสรรคนงาน i ให้ทำงาน j
ดังนั้น ตัวแบบทางคณิตศาสตร์ของปัญหานี้ คือ
หาค่าต่ำสุดของฟังก์ชันเป้าหมาย

$$
\mathrm{Z}=20 \mathrm{X}_{11}+21 \mathrm{X}_{12}+31 \mathrm{X}_{13}+17 \mathrm{X}_{21}+16 \mathrm{X}_{22}+33 \mathrm{X}_{23}+22 \mathrm{X}_{31}+19 \mathrm{X}_{32}+27 \mathrm{X}_{33}
$$

ภายใต้ข้อจำกัด

$$
\begin{aligned}
& X_{11}+X_{12}+X_{13}=1 \\
& X_{21}+X_{22}+X_{23}=1 \\
& X_{31}+X_{32}+X_{33}=1 \\
& X_{11}+X_{21}+X_{31}=1 \\
& X_{12}+X_{22}+X_{32}=1 \\
& X_{13}+X_{23}+X_{33}=1 \\
& X_{i 1}=0 \text { หรือ } 1 \text { สำหรับ } i=1,2,3 \text { และ } j=1,2,3
\end{aligned}
$$

การหาผลลัพธ์สำหรับตัวแบบการจัดสรรงานโดยทั่วไปใช้วิธี Hungarian Method ([7])
2. การหาผลลัพธ์ของปัญหาการจัดสรรงานด้วย iSolveModel Apps

จากภาพที่ 11 บริษัทฟ้าไทยจำกัดส่งพนักงานไปให้บริการในภาคต่าง ๆ เสียค่าใช้จ่ายรวมต่ำที่สุด 63,000 บาท รายละเอียดของการเลือกปุ่ม Solution แสดงในภาพที่ 12

ภาพที่ 12 แสดงผลการวิเคราะห์เมื่อเลือกปุ่ม Solution

จากภาพที่ 12 แสดงค่าผลลัพธ์ที่เหมาะสม ค่าในฟังก์ชันเป้าหมายมีค่า 63,000 บาท จำนวน ตัวแปร ตัดสินใจเป็นเชิงปริมาณทั้งหมด 9 ตัวแปร จำนวนข้อจำกัดทั้งหมด 6 ข้อ

ภาพที่ 13 แสดงผลการวิเคราะห์เมื่อเลือกปุ่ม Variables และConstrains
จากภาพที่ 13 แสดงผลลัพธ์ตัวแปรที่เหมาะสมและข้อจำกัด

iPad ${ }^{\text {- }}$			5:43 PM													
Final tableau after optimization																
Row	Basis	Optimal Value	x11	x 12	x13	x21	x22	x 23	x31	x32	x33	$\begin{gathered} \text { SLK } \\ 1 \end{gathered}$	$\begin{gathered} \text { SLK } \\ 2 \end{gathered}$	$\begin{gathered} \text { SLK } \\ 3 \end{gathered}$	$\begin{gathered} \text { SLK } \\ 4 \end{gathered}$	$\begin{array}{r} \text { SL }] \\ 5 \end{array}$
0		63	0	0	0	2	0	7	6	2	0	-4	1	0	-16	-1.
1	x 33	1	0	0	0	0	0	0	1	1	1	1	1	0	-1	-1
2	x13	0	0	0	1	0	0	1	-1	-1	0	-1	-1	0	1	1
3	$\begin{gathered} \text { SLK } \\ 3 \end{gathered}$	0	0	0	0	0	0	0	0	0	0	-1	-1	1	1	1
4	x 11	1	1	0	0	1	0	0	1	0	0	0	0	0	-1	0
5	x 12	0	0	1	0	-1	0	-1	0	1	0	0	1	0	0	-1
6	x22	1	0	0	0	1	1	1	0	0	0	0	-1	0	0	0

ภาพที่ 14 แสดงตารางผลการวิเคราะห์เมื่อเลือกปุ่ม Final Tableau
จากภาพที่ 14 ผลการวิเคราะห์สรุปได้ว่า บริษัทฟ้าไทย จำกัดสังทีม $A A$ ไปภาคเหนือส่งทีม $B B$ ไป ภาคกลางและทีม $C C$ ส่งไปภาคใต้เสียค่าใช้จ่ายต่ำสุด 63,000 บาท

ตัวอย่างที่กล่าวทั้งหมดเป็นกรณีการหาค่าต่ำสุดของปัญหาทางธุรกิจภายใต้ข้อจำกัด ภาพที่ 15 จะแสดง ปัญหาการหาค่าสูงสุดจากตัวอย่างที่มีใน iSolveModel Apps

IPad ${ }^{\text {\％}}$（ 3：45 PM	
－	
$\operatorname{MAX} 66 \times 1+84 \times 2-10 S 1-12 S 2$ SUBJECT TO $3 \times 1+4 \times 2<=4200$ ！number of available hours at work center 1 X1 +3 X2 $<=2250$ ！number of available hours at work center 2 $2 \times 1+2 \times 2<=2600$ ！number of available hours at work center 3 $\begin{aligned} & \mathrm{X} 1-10000 \mathrm{~S} 1<=0 \\ & \mathrm{X} 2-10000 \mathrm{~S} 2<=0 \end{aligned}$ LOWERBOUNDSSECTION X2 100 ！minimum quantity of product 2 to produce UPPERBOUNDSSECTION X1 1100 ！maximum quantity of product 1 to produce BINARYSECTION S1 S2 INTEGERSECTION X 1 $\times 2$ ENDMODEL	
	Solution is found！
	$z=91202.00000000001$
	OK

ภาพที่ 15 ตัวอย่างการหาค่าสูงสุดจาก iSolveModel Apps
นอกจากนี้ iSolveModel Apps สามารถวิเคราะห์ปัญหาที่มีตัวแปรการตัดสินใจจำนวนหลายตัว ดังตัวอย่างที่แสดงบางส่วนซึ่งคัดลอกมาจากตัวอย่างใน iSolveModel Apps มีจำนวนตัวแปรตัดสินใจ 480 ตัว และสมการข้อจำกัด 120 สมการ ดังภาพที่ 16

34m	
＋岛中边 C	
MN VER20＋205OUSTR29＋0．3iNV29＋15REO210＋16．5OVER210＋205OUSTR210＋0．31NV210＋15REO211＋16．5OVER211＋205 OUSTR211＋0．3NV211＋15REG212＋16．5OVER212 $+20 S O U S T R 212+0.3$ iNV $212+15 R E G 213+16.5 O V E R 213+20 S O U S T R 21 ~$ $3+0.3 \mathrm{NV} 213+15 R E O 214+16.5 O V E R 214+20 S O U S T R 214+0.3 N V 214+15 R E O 215+16.50 V E R 215+20 S O U S T R 215+0.31 N V$ $215+15 R E G 216+16.50 \mathrm{VLR} 216+2050 \cup \mathrm{STR} 216+0.3 \mathrm{NV} 216+15 \mathrm{REG217}+16.50 \mathrm{~V}$ LR $217+2050$ USTR217＋0．3NV217＋15R $+12.5 R E 035+13.750 \mathrm{VER} 35+1750$ USTR35 $+0.25 \mathrm{iNN} 35+12.5 R E 036+13.750 \mathrm{VER} 36+175$ OUSTR36＋0．25NW $36+12.5 R E 03$ ER39＋17SOUSTR $39+0.25 \mathrm{NV} 39+12.5 R E O 310+13.75 O V E R 310+1750 U S T R 310+0.25 \mathrm{NV} 310+12.5 R E G 311+13.750 V E R 3$ $11+1750 U S T R 311+0.25 \mathrm{NV} 11+12.5 R E 0312+13.750 \mathrm{VER} 312+17 S O U S T R 312+0.25 \mathrm{NV} 312+12.5 R E G 313+13.750 \mathrm{VER} 3$ $13+17$ SOUSTR $313+0.25 \mathrm{NV} 313+12$ 5REG314 +13.750 V ［R314＋175OUSTR314＋0．25NVV314＋12．5REG315＋13．750V［R3 	
	375 OVER418＋25SOUSTR418＋0．431NV418＋21．5REG419＋23．750VER419＋25SOUSTR419＋0．431NV419＋21．5REG420 +2
	$3750 V E R 420+255 O U S T R 420+0.43$ NVN $420+21.5 R E G 421+23.750$ VER421＋25SOUSTR421＋0．431NV421＋21．SREG422＋2
	3.75 OVER422＋2SSOUSTR $422+0.43$ NVV422＋21．SREG423＋23．75OVER423＋25SOUSTR423＋0．431NV423＋21．SREG424＋2
	SURECT TO

ภาพที่ 16 ตัวอย่างจาก iSolveModel Apps กรณีที่มีจำนวนตัวแปรการตัดสินใจหลายตัว

บทสรุป

การหาผลลัพธ์ของการโปรแกรมเชิงเส้นโดยทั่วไปจะใช้วิธีกราฟและวิธีซิมเพล็กซ์ และการประยุกต์สำหรับ ตัวแบบการขนส่งจะหาผลลัพธ์ด้วยวิธี Stepping Stone Method ส่วนการหาผลลัพธ์ของตัวแบบการจัดสรรงาน ใช้วิธี Hungarian Method การหาผลลัพธ์ของการโปรแกรมเชิงเส้นในกรณีที่มีตัวแปรตัดสินใจหลายตัวและ ข้อจำกัดจำนวนมากจะเกิดความยุ่งยากและมีความซับซ้อนมาก ดังนั้น การใช้ iSolveModel Apps บน iPad ในการหาผลลัพธ์จะทำได้อย่างรวดเร็ว ทำให้การเรียนการสอนเรื่องการโปรแกรมเชิงเส้นมีประสิทธิภาพมากขึ้น ใช้เวลาน้อยลงในการหาผลลัพธ์ ผู้เรียนสามารถตรวจสอบการเขียนรูปแบบทางคณิตศาสตร์ของปัญหาจาก หน้าจอเมื่อเลือกปุ่ม Model ตรวจสอบผลลัพธ์ได้อย่างรวดเร็วจากหน้าจอของ Solution หากมีปัญหาในระหว่าง การเรียนการการสอน ผู้เรียนสามารถแสดงให้ผู้สอนได้ทราบจากหน้าจอ iPad ทำให้ผู้สอนสามารถแก้ไขปัญหา ในระหว่างเรียนได้

สำหรับ iSolveModel Apps บน iPad เป็นแอพลิเคชันสำหรับการหาผลลัพธ์ของการโปรแกรมเชิงเส้น โดยวิธี Simplex Method ([5]) ซึ่งวิธีนี้ต้องใช้ความรู้เรื่องเมตริกซ์ โดยปกติการเรียนการสอนในชั้นเรียนเรื่องการ โปรแกรมเชิงเส้นสอนจะใช้วิธีดังกล่าว ดังนั้น การใช้ iSolveModel Apps จะมีประสิทธิภาพขึ้น สามารถอธิบาย หน้าจอของ Variables, Constrains และ Final Tableau ได้ดียี่งขึ้น

กรณีที่มีจำนวนตัวแปรการตัดสินใจและข้อจำกัดมากกว่า 10 หน้าจอของ Final Tableau จะไม่สามารถ แสดงผลได้ จำนวนตัวแปรการตัดสินใจ 5,000 ตัวแปรและข้อจำกัดสามารถมีได้ถึง 5,000 ข้อ การจะหาผลลัพธ์ ได้หรือไม่ขึ้นกับหน่วยความจำของอุปกรณ์พกพาที้ใช้ในการวิเคราะห์ ([4])

เอกสารอ้างอิง

[1] D. R. Anderson, et al, Quantitative methods for business. $12^{\text {th }}$ ed. Canada: South-Western, 2013.
[2] C. Hatairatana, Handout: Quantitative analysis and Business Statistics. Bangkok: University of The Thai Chamber of Commerce, 2016. (in Thai).
[3] S. Jamnarnwej, Quantitative analysis for management and decision making. ${ }^{\text {nd }}$ ed. Bangkok: Witthayaphat, 2012. (in Thai).
[4] MINDTech. (2017). iSolveModel. [Online]. Available: http://itunes.apple.com/us/app/ isolvemodel/id387627473?mt=8.
[5] B. Panomruttanarug, (2017). Handout: Advanced Mathematics for Electrical Engineering. [Online]. Available: http://inc.kmutt.ac.th/~yoodyui/courses/EEE603/. (in Thai).
[6] B. Render, et al., Quantitative analysis for management. $12^{\text {th }}$ ed. Harlow: Pearson, 2015.
[7] N. Utayanwutigul and Y. Kanjanasakda, Handout: Quantitative analysis and Business Statistics. Bangkok: University of The Thai Chamber of Commerce, 2018. (in Thai).

